F# Compilation Speed

Just recently, I was watching the fsharpConf2023. There was a very interesting talk from the CEO of Darklang, Paul Biggar. Darklang was originally created using OCaml. Later on they decided to switch to F# and the talk is about their experience with F#. Paul Biggar specifically discussed the goods and the bads of F# as a language to use in production. One of the comments that stood out to me was the compilation speed of F#.

Continue reading “F# Compilation Speed”

Loading

The MetaVision Copy Tool

In the intensive care unit of the hospital where I work (the University Medical Center Utrecht), we rely on a Patient Data Management System (PDMS) called MetaVision. This system stands out for its exceptional configurability, making it an invaluable tool. With MetaVision, we have the ability to define and fine-tune various aspects, allowing for a truly customized system. The fundamental building block of this system is a parameter, which can be displayed and utilized across menus, graphs, tables, forms, and more. These parameters can store various data types, including text, numbers, dates, and more. Additionally, VB.NET scripts can be employed to further enhance and extend the functionality of these parameters.

Continue reading “The MetaVision Copy Tool”

Loading

Trees

A tree is a very common datastructure. I stumbled upon this subject because of a requirement that is needed for a mathematical solution. This solution needs to keep track of changes that start with a single change but can have multiple effects. Each effect, i.e. change, can result in turn into multiple changes, hence the need of a tree structure.

Continue reading “Trees”

Loading

Feliz React components

I have been looking for a best practice to create a major single page application using the excellent Feliz library. I also heavily borrowed ideas from a book by the author of Feliz, Zaid Ajaj. The application in mind is intended to be the Dutch National Pediatric Emergency app used for acute interventions in pediatric medical emergencies. The main purpose of the application is to provide all calculations necessary based on age and weight of the patient.

Continue reading “Feliz React components”

Hoe kunnen wij kritisch zieke kinderen (nog) optimaal(-er) behandelen over 5 jaar?

Waarom?

Het ergste wat een ouder kan overkomen is dat zijn/haar kind kritisch levensbedreigend ziek wordt. De Kinder IC is dan vaak de laatste strohalm. Gelukkig wordt de behandeling steeds beter op de IC, maar daarmee worden ook de uitdagingen steeds groter. Een zeer belangrijke uitdaging daarbij is groeiende complexiteit van zorg die geleverd moet worden aan toenemend complexe patiënten.

Continue reading “Hoe kunnen wij kritisch zieke kinderen (nog) optimaal(-er) behandelen over 5 jaar?”

The case for a Generalized Computerized Provider Order Entry system: GenPRES

What is the problem?

To Err is Human. This is how a landmark paper from 2000 starts, recognizing that “the problem is not bad people in health care–it is that good people are working in bad systems that need to be made safer​*​. The consequences of errors can be described by adverse events. Adverse events that are related to medication and or drug/fluid incidents constitute about 20% of all types of adverse events, which makes this the second most common type of adverse event​†​.

Continue reading “The case for a Generalized Computerized Provider Order Entry system: GenPRES”

PICURED Pediatric Intensive Care Research Database

At the PICU (Pediatric Intensive Care Unit) of the University Medical Center Utrecht, we have been working the last years to make the data from our PDMS (Patient Data Management System) available for research. This has resulted in a multilayered system with generic possibilities to extract data and transform those data into a convenient flat table format (as described in a previous post).

Continue reading “PICURED Pediatric Intensive Care Research Database”

Machine Learning in Pediatric Critical Care

Machine Learning (ML) (or Artificial Intelligence AI) is trending. Publications with regard to ML are on the increase in medical literature.

Specifically critical care medicine generates huge amounts of detailed data. In a recent article steps are described to enable use of ML in daily clinical practice. This blog will describes an actual working implementation of the first step in ML to be used in clinical practice.


Mamdani, M., & Slutsky, A. S. (2020). Artificial intelligence in intensive care medicine. Intensive Care Medicine, 47(2), 147–149. http://doi.org/10.1007/s00134-020-06203-2

Continue reading “Machine Learning in Pediatric Critical Care”